← Quay lại trang sách

10 Sự bay lên của nhân loại Phương trình Navier-Stokes

Phương trình này cho ta biết điều gì?

Nó chính là định luật thứ hai về chuyển động của Newton được ngụy trang. Vế trái là gia tốc của một miền nhỏ chất lưu. Vế phải là các lực tác dụng lên miền đó: áp lực, ứng suất, và các nội lực.

Tại sao nó lại quan trọng?

Cung cấp một phương thức thực sự chính xác để tính toán chuyển động của chất lưu. Nó là điểm cốt yếu trong vô vàn các bài toán khoa học và kỹ thuật.

Nó đã dẫn tới những gì?

Máy bay phản lực dân dụng hiện đại, tàu ngầm chuyển động nhanh và êm, xe đua Công thức 1 với khả năng bám đường đua ở vận tốc cao, và các kỹ thuật tiên tiến trong y học về chuyển động của máu trong các ven và động mạch. Các phương pháp dùng máy tính để các giải phương trình, được biết đến dưới cái tên Động lực học chất lưu điện toán (CFD), được các kỹ sư sử dụng rộng rãi để hoàn thiện công nghệ trong nhiều lĩnh vực.

Nhìn từ không gian, Trái Đất là một quả cầu trắng-xanh sặc sỡ với các mảng xanh lục và nâu, hoàn toàn không giống bất cứ hành tinh nào trong Hệ Mặt Trời - hay bất kỳ hành tinh nào khác trong số 500 hành tinh đang quay xung quanh các ngôi sao khác mà hiện nay chúng ta đã biết. Chính từ “Trái Đất” ngay lập tức mang lại hình ảnh như thế trong trí óc chúng ta. Nhưng hơn 50 năm trước, hình ảnh phổ biến cho cùng từ đó có lẽ là một nắm đất, theo nghĩa đất làm vườn. trước thế kỷ 20, con người đã nhìn lên bầu trời và băn khoăn tự hỏi về những vì sao và các hành tinh, nhưng vị trí quan sát vẫn là từ mặt đất. Sự bay lượn của con người chỉ có trong những giấc mơ, nó là đối tượng của các truyện thần thoại và cổ tích. Hiếm ai nghĩ tới chuyện du hành đến những thế giới khác.

Một vài người tiên phong dũng cảm đã bắt đầu chậm chạp tiến vào bầu trời. Đầu tiên là những người Trung Hoa. Vào khoảng năm 500 TCN , Lỗ Ban (Lu Ban) đã sáng chế ra một con chim bằng gỗ, có thể được xem là chiếc tàu lượn nguyên thủy. Năm 559 SCN , Cao Dương (Gao Yang) mới lên ngôi đã cưỡng ép, buộc Nguyên Hoàng Đầu (Yuan Huangtou), hoàng tử gần cuối triều Bắc Ngụy, vào một cái diều để do thám quân địch từ trên cao. Nguyên đã sống sót sau thử nghiệm đó, nhưng sau đấy vẫn bị hành quyết. với việc phát hiện ra khí hydro ở thế kỷ 17, mong ưóc được bay lượn đã lan rộng tới châu Âu, truyền cảm hứng cho một số cá nhân dũng cảm bay lên những tầng thấp của bầu khí quyển Trái Đất bằng khí cầu. Nhưng khí hydro rất dễ nổ, nên vào năm 1783, hai anh em người Pháp là Joseph-Michel và Jacques-Étienne Montgolfier đã chứng minh ý tưởng mới và an toàn hơn rất nhiều của họ trước công chúng, đó là khí cầu dùng khí nóng - đầu tiên là với một chuyến bay thử nghiệm không người lái, và sau đó chính Étienne làm người lái.

Tốc độ tiến triển và độ cao mà con người có thể đạt tới bắt đầu tăng nhanh chóng. Năm 1903, Orville và Wilbur Wright thực hiện chuyến bay thực sự đầu tiên bằng máy bay. Hãng hàng không đầu tiên, DELAG ( Deutsche Luftschiffahrts- Aktiengesellschaft) bắt đầu hoạt động vào năm 1910, hành khách bay từ Frankfurt tới Baden-Baden và Dủsseldorf bằng khí cầu do tập đoàn Zeppelin chế tạo. Năm 1914, hãng hàng không St Peterburg-Tampa đã có chuyến bay thương mại chở hàng giữa hai thành phố của bang Florida, một hành trình dài 23 phút với chiếc thủy phi cơ của Tony Jannus. Du lịch bằng máy bay thương mại nhanh chóng trở thành chuyện bình thường, và rồi máy bay phản lực xuất hiện: chiếc De Havilland Comet bắt đầu các chuyến bay đều đặn vào năm 1952, nhưng tính kém bền vững của vật liệu kim loại đã gây ra một số vụ tai nạn, và Boeing 707 trở thành kẻ thống trị thị trường kể từ chuyến bay đầu tiên vào năm 1958.

Những máy bay cá nhân thông thường có thể thấy ở độ cao 8km, đó là giới hạn bay vào thời gian đó của chúng, chí ít là cho đến khi Virgin Galactic bắt đầu các chuyến bay trên quỹ đạo thấp. Máy bay quân sự và máy bay thử nghiệm được bay cao hơn. Rồi các chuyến bay vào không gian, cho đến lúc đó vẫn là giấc mơ của một số người mơ mộng, bắt đầu trở thành một đề xuất khả thi. Năm 1961, nhà du hành vũ trụ Xô Viết Yuri Gagarin đã thực hiện chuyến bay vòng quanh Trái Đất đầu tiên trên con tàu vũ trụ Vostok 1 . Năm 1969, phi thuyền Apollo 11 của NASA đã đưa thành công hai nhà du hành Neil Amstrong và Buzz Aldrin lên Mặt Trăng. Các tàu con thoi bắt đầu các chuyến bay từ năm 1982, và trong khi những hạn chế về ngân sách cản trở nó đạt được mục đích ban đầu của mình - một phương tiện có thể tái sử dụng với khả năng quay vòng nhanh - nó đã trở thành một trong những phương tiện để thực hiện các chuyến bay vào không gian theo các quỹ đạo thấp, bên cạnh tàu không gian Soyuz của Nga. mới đây Atlantis đã thực hiện chuyến bay cuối cùng của chương trình tàu con thoi không gian, nhưng các phương tiện mới cũng đã được lên kế hoạch, hầu hết là bởi các công ty tư nhân. Châu Âu, Ấn Độ, Trung Quốc, và Nhật Bản cũng đều đã có các chương trình và cơ quan không gian của riêng họ.

Việc nhân loại thực sự bay lên cao đã làm thay đổi quan điểm của chúng ta về vấn đề chúng ta là ai và chúng ta đang sống ở đâu - nguyên nhân chủ yếu trả lời cho câu hỏi tại sao “Trái Đất” lại có nghĩa là một quả địa cầu xanh-trắng. Những màu sắc ấy nắm giữ “manh mối” về khả năng bay mới được tìm thấy của chúng ta. Màu xanh là màu của nước, và màu trắng là hơi nước dưới dạng các đám mây. Trái Đất là thế giới của nước, với các đại dương, biển cả, sông, hồ. Việc tốt nhất mà nước có thể làm đó là chảy , thường là rời khỏi những chỗ mà nó không muốn. Dòng chảy có thể là mưa chảy xuống từ mái nhà hay nước đổ xuống từ một ngọn thác. Nó có thể mềm mại và trơn tru, hay dữ dội và cuộn xoáy - như dòng chảy êm đềm của sông Nile vắt qua sa mạc hoặc dòng nước sủi bọt trắng xóa đổ xuống từ sáu thác nước lớn của nó.

Đó là những hình mẫu do nước tạo nên, hay nói một cách tổng quát hơn, là do một chất lưu nào đó chuyển động gây nên. Những mô thức này đã thu hút sự chú ý của các nhà toán học ở thế kỷ 19 khi họ đưa ra phương trình đầu tiên cho chuyển động của chất lưu. Chất lưu quan trọng đối với sự bay lượn và không dễ thấy như nước, nhưng có mặt hầu như ở khắp nơi: đó chính là không khí. Dòng chảy của không khí phức tạp hơn về mặt toán học, bởi vì không khí có thể nén được. Bằng cách sửa đổi các phương trình để có thể áp dụng chúng cho các chất lưu nén được, các nhà toán học đã khởi đầu một ngành khoa học mà cuối cùng đã mở ra Kỷ nguyên của ngành hàng không: khí động lực học. Những người tiên phong trong lĩnh vực này có thể bay lượn được là dựa vào kinh nghiệm, nhưng các hãng hàng không thương mại và các tàu con thoi không gian có thể bay được là nhờ các kỹ sư đã thực hiện những tính toán làm cho các chuyến bay trở nên an toàn và đáng tin cậy hơn (trừ một số ít tai nạn). Thiết kế máy bay đòi hỏi phải có một hiểu biết sâu sắc về toán học của dòng chất lưu. Và người đi tiên phong trong lĩnh vực động lực học chất lưu chính là nhà toán học nổi tiếng Leonhard Euler, người đã mất vào đúng năm mà anh em nhà Montgolfier thực hiện chuyến bay đầu tiên bằng khí cầu của họ.

Ít có lĩnh vực nào của toán học mà nhà toán học đa năng Euler không chú ý đến. Người ta cho rằng một nguyên nhân khiến Euler có một sự nghiệp khoa học đồ sộ và đa diện chính là chính trị, hay chính xác hơn, là do ông không hề quan tâm tới chính trị. Ông làm việc ở Nga nhiều năm, trong triều đình của Nữ hoàng Catherine, và một trong những cách hiệu quả nhất để tránh bị bắt bó do dính líu đến chính trị cùng với những hậu quả thảm khốc tiềm tàng của nó là cần mẫn nghiên cứu để không một ai tin rằng ông còn thời gian dành cho chính trị nữa. Nếu đó là nguyên nhân thực sự thì chúng ta cần cảm ơn triều đình ấy vì đã tạo điều kiện để có những khám phá tuyệt diệu của Euler. Nhưng tôi nghiêng về hướng suy nghĩ rằng Euler có nhiều công trình như thế là nhờ vào trí tuệ tuyệt vời của ông. Ông đã công bố một số lượng khổng lồ các kết quả toán học là vì ông không thể làm gì khác hơn ngoài nghiên cứu.

Nhưng Euler không phải người đầu tiên quan tâm đến vấn đề này. Archimedes cũng đã nghiên cứu sự ổn định của các vật thể nổi gần 2200 năm trước. Năm 1738, nhà toán học người Thụy Sỹ, Daniel Bernoulli công bố cuốn Thủy động lực học (Hydrodynamica) trong đó có phát biểu nguyên lý rằng: chất lưu chuyển động nhanh hơn ở vùng có áp suất thấp hơn. Ngày nay nguyên lý Bernoulli vẫn thường được viện dẫn để giải thích tại sao máy bay lại bay được: cánh máy bay được tạo hình sao cho ở mặt trên của cánh không khí chảy nhanh hơn, giảm áp lực cho cánh và tạo lực nâng, nâng máy bay lên. Giải thích như vậy thì quá đơn giản, vì còn nhiều nhân tố khác có liên quan đến sự bay, nhưng nó đã minh họa được mối liên hệ gần gũi giữa những nguyên lý toán học cơ bản và thiết kế máy bay trong thực tiễn. Bernoulli thể hiện nguyên lý của mình dưới dạng một phương trình đại số liên hệ vận tốc và áp suất trong một chất lưu không nén được.

Năm 1757, Euler đã chuyển hướng trí tuệ đa dạng của mình sang dòng chảy của chất lưu, và ông công bố bài báo Những nguyên lý tổng quát của chuyển động chất lưu (Principes généraux du mouvement des fluids) trong Kỷ yếu của Viện Hàn lâm Khoa học Berlin . Đó là cố gắng nghiêm túc đầu tiên nhằm mô hình hóa dòng chảy của chất lưu bằng cách sử dụng một phương trình đạo hàm riêng. Để giữ bài toán trong các giới hạn hợp lý, Euler đã đưa ra một số giả thiết đơn giản hóa: đặc biệt, ông đã giả sử rằng chất lưu là không nén được, tức là nó giống với nước hơn là không khí, và có độ nhớt bằng 0 - tức là không dính. Những giả thiết này đã cho phép ông tìm được một số nghiệm, nhưng lại cũng khiến cho phương trình của ông mất đi tính thực tế. Phương trình của Euler ngày nay vẫn còn được sử dụng cho một số loại bài toán, nhưng xét toàn diện thì nó quá đơn giản đối với nhiều mục đích thực tế.

Hai nhà khoa học khác đã đưa ra một phương trình thực tế hơn, đó là Claude-Louis Navier, một kỹ sư và nhà vật lý người Pháp, và Goerge Gabriel Stokes, một nhà vật lý và toán học người Ailen. Navier đã đưa ra một hệ phương trình đạo hàm riêng cho dòng chảy của chất lưu nhớt vào năm 1822; còn Stokes bắt đầu công bố các kết quả về đề tài này 20 năm sau đó. Mô hình dòng chảy của chất lưu nhận được ngày nay được gọi là phương trình Navier-Stokes (thường được dùng ở dạng số nhiều vì phương trình này được phát biểu dưới dạng vectơ, do vậy nó có nhiều thành phần). Phương trình này chính xác đến mức ngày nay các kỹ sư thường sử dụng nghiệm thu được từ máy tính thay vì thực hiện các thử nghiệm vật lý trong các hầm gió. Hiện nay, kỹ thuật này, được biết đến dưới tên gọi động lực học chất lưu điện toán ( computational fluid dynamics - CFD), đã trở thành chuẩn cho tất cả các bài toán có liên quan đến động lực học chất lưu: khí động lực học của tàu vũ trụ, thiết kế xe đua Công thức 1 và các ôtô thông thường, và chuyển động tuần hoàn của máu trong cơ thể người hay một trái tim nhân tạo.

Có hai cách để nhìn nhận hình học của một chất lưu. Cách thứ nhất, đó là theo dõi chuyển động của các hạt chất lưu nhỏ bé một cách riêng rẽ và xem nó chuyển động thế nào. Cách thứ hai, đó là tập trung vào vận tốc của các hạt đó: nó chuyển động nhanh thế nào và có hướng ra sao ở mọi thời điểm. Hai cách này có liên quan mật thiết với nhau, nhưng mối quan hệ này rất rối rắm và khó tháo gỡ, ngoại trừ khi tính toán gần đúng bằng số. Một trong những việc thể hiện tầm nhìn sâu sắc của Euler, Navier và Stokes đó là nhận thức được rằng mọi thứ sẽ trở nên đơn giản hơn rất nhiều dưới ngôn ngữ của vận tốc. Dòng chảy của một chất lưu được hiểu rõ nhất thông qua trường vận tốc: tức là một mô tả toán học cho biết vận tốc thay đổi thế nào từ điểm này sang điểm khác trong không gian và từ thòi điểm này sang thòi điểm khác trong thời gian. Và Euler, Navier và Stokes đã viết ra các phương trình mô tả trường vận tốc đó. Từ đó có thể tính được mô thức thực sự của dòng chảy chất lưu, hoặc chí ít cũng đạt tới một sự gần đúng tốt.

Phương trình Navier-Stokes có dạng:

với p là mật độ của chất lưu, v là trường vận tốc của nó, p là áp suất, T xác định các ứng suất, f biểu diễn các lực khối, tức các lực tác dụng xuyên qua toàn bộ vật * , chứ không phải chỉ trên bề mặt của nó. Dấu chấm là một phép toán với vectơ, và ? là một ký hiệu của phép toán lấy đạo hàm riêng, cụ thể là:

Như lực hấp dẫn và lực điện từ - ND

Phương trình này được suy ra từ vật lý cơ bản. Cũng giống như với phương trình sóng, bước quan trọng đầu tiên là áp dụng định luật hai Newton nhằm liên kết chuyển động của một hạt chất lưu với các lực tác dụng lên nó. Lực tác dụng chính ở đây là ứng suất đàn hồi, và nó gồm hai thành phần chính: lực ma sát gây ra bởi độ nhớt của chất lưu và ảnh hưởng của áp suất, hoặc dương (nén) hoặc âm (làm loãng). Cũng có những lực khối phát sinh từ gia tốc của chính hạt chất lưu. Tổng hợp tất cả các thông tin này sẽ dẫn tới phương trình Navier-Stokes, mà trong bối cảnh cụ thể này ta có thể coi nó là một phát biểu của định luật bảo toàn động lượng. Cơ sở vật lý ở đây đủ chắc chắn và mô hình đủ thực tế để bao hàm hầu hết các nhân tố quan trọng; đó là lý do tại sao phương trình này lại phù hợp với thực tiễn đến thế. Giống như hầu hết các phương trình truyền thống của vật lý toán cổ điển, đây là một mô hình continuum : nó giả thiết rằng chất lưu có thể chia nhỏ vô hạn định.

Đây có lẽ là điểm mấu chốt khiến phương trình Navier- Stokes tiềm tàng mất đi sự gắn kết với thực tế, nhưng sự khác biệt chỉ xuất hiện khi chuyển động của chất lưu có liên quan với những thay đổi nhanh ở thang từng phân tử riêng rẽ. Những chuyển động ở thang nhỏ ấy là thiết yếu trong một bối cảnh quan trọng: dòng chảy rối. Nếu bạn bật một vòi nước và để nước chảy chậm xuống, nó sẽ rơi xuống theo một dòng trơn nhỏ. Tuy nhiên, nếu bạn vặn vòi hết cỡ thì bạn sẽ nhận được một dòng nước vọt ra, sủi bọt. Tương tự như vậy, dòng chảy nhanh sủi bọt cũng xuất hiện trên sông, suối. Hiệu ứng này được gọi là chảy rối, và trong số chúng ta, những ai được bay thường xuyên sẽ ý thức rõ ràng ảnh hưởng của hiệu ứng này khi nó xuất hiện trong không khí. Nó mang lại cảm giác giống như máy bay đang đi dọc theo một con đường rất xóc vậy.

Phương trình Navier-Stokes rất khó giải. Thực tế cho đến trước khi các máy vi tính mạnh được phát minh, nó quá khó đến nỗi các nhà toán học đã phải quy giản nó về những đoạn nhỏ và thực hiện các phép tính gần đúng. Nhưng khi bạn nghĩ về chất lưu thật, thì nó thực sự rất khó để giải. Bạn chỉ cần nhìn nước chảy thành dòng, hay sóng vỗ vào bãi biển, là đủ thấy rằng chất lưu có thể chảy theo những cách cực kỳ phức tạp. Có những gợn sóng và các xoáy, hay các cấu trúc quyến rũ như dòng triều mạnh Severn, một bức tường nước ập tới cửa sông Severn ở vùng tây nam nước Anh khi thủy triều lên. Các hình mẫu về dòng chảy của chất lưu là nguồn gốc của vô số các nghiên cứu toán học, nhưng một trong những câu hỏi khó nhất đồng thời cũng là cơ bản nhất trong toán học thì vẫn chưa có lời giải đáp: liệu có một sự đảm bảo nào về mặt toán học rằng các nghiệm của phương trình Navier-Stokes thực sự tồn tại và luôn đúng tại mọi thời điểm trong tương lai? Giải thưởng một triệu đôla sẽ được trao cho bất kỳ ai giải được bài toán này, đây là một trong bảy bài toán thiên niên kỷ của Viện Clay, được chọn để đại diện cho các bài toán quan trọng nhất chưa giải quyết được trong thời đại của chúng ta. Câu trả lời là “có” đối với trường hợp hai chiều, nhưng không ai biết chuyện gì sẽ xảy ra cho dòng chảy trong không gian ba chiều.

Mặc dù vậy, phương trình Navier-Stokes vẫn cung cấp một mô hình hữu ích cho dòng chảy rối bởi vì các phân tử vô cùng nhỏ bé. Do các xoáy nước rối với đường kính vài milimet đã thâu tóm được nhiều đặc điểm chính của dòng chảy rối, trong khi một phân tử thì nhỏ hơn rất nhiều, nên mô hình continumm vẫn còn phù hợp. Vấn đề chính mà dòng chảy rối gây ra là một vấn đề mang tính thực hành: nó khiến ta thực sự không thể giải được bằng số phương trình Navier-Stokes, vì các máy tính không thể xử lý được các tính toán quá ư phức tạp. Các phương pháp giải bằng số các phương trình đạo hàm riêng sử dụng một lưói tính toán bằng cách chia không gian thành các vùng riêng biệt và thời gian thành các khoảng nhỏ rời rạc. Để bao quát một phạm vi rộng lớn của các thang mà các dòng chảy rối hoạt động - từ các vòng xoáy lớn hay trung bình, giảm thẳng xuống đến thang cỡ milimet - bạn cần xây dựng một lưói tính toán tinh vi đến mức không thể tồn tại. Vì lý do đó, các kỹ sư thường sử dụng các mô hình thống kê cho các dòng chảy rối.

Phương trình Navier-Stokes đã tạo nên một cuộc cách mạng đối với giao thông hiện đại. Có lẽ ảnh hưởng lớn nhất của nó là trong thiết kế máy bay chở khách, không chỉ bởi vì nó phải bay một cách hiệu quả, mà còn là vì nó phải bay , một cách ổn định và tin cậy. Ngành thiết kế tàu biển cũng được hưởng lợi từ phương trình này, bởi vì nước cũng là một chất lưu. Nhưng ngay cả những chiếc ôtô của những người nội trợ bình thường cũng được thiết kế dựa trên các nguyên lý của khí động lực học, không chỉ bởi vì như thế trông chúng sẽ thon đẹp và phong cách hơn, mà còn bởi vì việc tiêu thụ nhiên liệu một cách hiệu quả lại dựa trên sự tối thiểu hóa lực cản do dòng không khí chảy qua chiếc xe gây ra. Một cách để làm giảm thiểu lượng carbon thải ra là lái những chiếc xe hiệu quả về mặt khí động lực học. Dĩ nhiên, còn có nhiều cách khác nữa, bắt đầu từ những chiếc xe hơi nhỏ hơn, chậm hơn rồi tới các xe điện, hay đơn giản là ít lái xe đi. Một số cải tiến lớn để tiết kiệm nhiên liệu, một mặt tới từ những cải tiến về công nghệ chế tạo động cơ, mặt khác tới từ việc áp dụng khí động lực học hiệu quả hơn.

Trong những ngày đầu tiên của ngành thiết kế máy bay, những người tiên phong đã lắp ráp máy bay của họ theo những tính toán thiếu chặt chẽ, dựa nhiều vào trực giác vật lý kết hợp với các phép thử-sai. Khi mà mục tiêu của bạn chỉ là bay xa hơn 100m và cao không quá 3m, thì như thế cũng đủ lắm rồi. Lần đầu tiên khi chiếc WrightFlyer I cất cánh, thay vì tròng trành và đâm xuống đất sau vài ba giây, nó đã đi được cỡ 37m với vận tốc dưới 11km/h. Orville, người phi công trong chuyến bay ấy, đã điều khiển để giữ máy bay ở trên không trong khoảng thời gian đáng kinh ngạc là 12s (vào thời gian đó). Nhưng kích thước của máy bay chở khách đã tăng nhanh chóng vì các lý do kinh tế: bạn càng chở được nhiều khách trong một chuyến bay, thì lợi nhuận mà bạn thu được càng cao. Không lâu sau, việc thiết kế máy bay đã phải dựa trên một phương pháp hợp lý và đáng tin cậy hơn. Ngành khí động lực học đã ra đời và công cụ toán học làm nền tảng cho nó chính là các phương trình chuyển động của chất lưu. Vì không khí vừa nhớt vừa nén được, nên phương trình Navier- Stokes, hay một vài dạng đơn giản hóa của nó mà vẫn còn làm cho bài toán đã cho có ý nghĩa, đóng vai trò trung tâm khi lý thuyết còn vận hành được.

Tuy nhiên, giải các phương trình này mà không có sự trợ giúp của các máy tính hiện đại là điều thực sự không thể. Do vậy, các kỹ sư đã nhờ đến một máy tính tương tự: đó là đặt các mô hình máy bay vào một hầm gió. Sử dụng một vài tính chất chung của các phương trình để tìm ra các biến sẽ thay đổi như thế nào khi thang của mô hình thay đổi. Phương pháp này cung cấp cho ta các thông tin cơ bản một cách nhanh chóng và có thể tin cậy được. Hầu hết các đội xe đua Công thức 1 ngày nay đều sử dụng các hầm gió để thử nghiệm thiết kế của họ và đánh giá các cải tiến tiềm năng, nhưng các máy tính ngày nay quá mạnh nên hầu như họ đã chuyển sang dùng CFD. Chẳng hạn, hình 43 cho thấy một tính toán CFD của các dòng không khí chảy qua một chiếc BMW Sauber.

Hình 43 Dòng không khí chảy qua một chiếc xe đua Công thức 1 được tính bằng CFD.

Các hầm gió không hề tiện lợi một chút nào: rất tốn kém để xây dựng và vận hành, đã thế lại còn cần nhiều mô hình ở các thang khác nhau để thử nghiệm. Có lẽ khó khăn lớn nhất là thực hiện các phép đo đạc chính xác dòng không khí mà không làm ảnh hưởng đến nó. Chẳng hạn nếu bạn đặt một dụng cụ đo trong hầm gió để đo áp suất không khí, thì chính bản thân dụng cụ ấy cũng làm nhiễu động dòng không khí. Vì vậy, có lẽ ưu thế lớn nhất về mặt thực hành của CFD là bạn có thể tính toán các thông tin của dòng không khí mà không làm ảnh hưởng đến nó. Tất cả những gì bạn muốn đo đều luôn sẵn sàng. Hơn nữa, bạn có thể thay đổi thiết kế của xe hay một bộ phận, ngay trong phần mềm, mà điều này thì nhanh hơn và rẻ hơn nhiều so với việc chế tạo nhiều mẫu xe khác nhau. Dẫu thế nào thì các quá trình sản xuất hiện đại, ở giai đoạn thiết kế, đều thường xuyên sử dụng các mô hình máy tính.

Máy bay siêu thanh, tức là máy bay bay nhanh hơn âm thanh, đặc biệt khó nghiên cứu khi sử dụng các mô hình trong hầm gió bởi vì tốc độ gió quá lớn. Ở tốc độ như thế, không khí không thể chảy qua máy bay nhanh như máy bay tự vượt lên trong không khí, và điều này gây ra các sóng xung kích - những gián đoạn đột ngột của áp suất không khí, khiến dưới mặt đất nghe như có tiếng nổ vậy. Vấn đề này là một trong những lý do tại sao chiếc máy bay Concorde do Pháp và Anh hợp tác sản xuất (máy bay siêu thanh thương mại duy nhất được sử dụng) đã có những thành công rất hạn chế: nó không được bay với tốc độ siêu thanh ngoại trừ khi vượt đại dương. CFD được sử dụng rộng rãi để dự đoán dòng không khí chảy qua một máy bay siêu thanh.

Trên hành tinh của chúng ta có khoảng 600 triệu chiếc xe ôtô và hàng chục ngàn chiếc máy bay dân sự, do vậy mặc dù những ứng dụng của CFD nghe có vẻ như thuộc về công nghệ cao, chúng lại rất quan trọng trong đời sống hằng ngày của chúng ta. Những ứng dụng khác của CFD có chiều kích nhân vãn hơn. Chẳng hạn, nó được sử dụng rộng rãi trong các nghiên cứu y học để tìm hiểu sự lưu thông của máu trong cơ thể người. Những trục trặc trong hoạt động của tim là nguyên nhân hàng đầu gây tử vong tại các nước phát triển, và nguyên nhân có thể là do vấn đề của chính quả tim hoặc do tắc nghẽn động mạch, làm máu ngừng lưu thông và đóng cục lại. Toán học mô tả sự lưu thông máu trong cơ thể người đặc biệt khó giải quyết bằng giải tích, bởi vì các thành động mạch thì đàn hồi và có thể co dãn. Tính toán chuyển động của một chất lưu trong ống có thành cứng đã đủ khó rồi, nhưng nếu ống lại có thể thay đổi hình dạng tùy theo áp lực nữa thì lại càng khó hơn, vì bây giờ miền tính toán không còn bất biến theo thời gian nữa. Mặt khác, hình dạng của miền tính toán có ảnh hưởng đến hình mẫu dòng chảy của chất lưu, đồng thời hình mẫu của chất lưu cũng ảnh hưởng trở lại lên miền ấy. Toán học chỉ với bút và giấy thật sự không đủ để xử lý loại vòng hồi tiếp này.

CFD là công cụ lý tưởng cho vấn đề như vậy, vì các máy tính có thể thực hiện hàng tỉ phép tính mỗi giây. Các phương trình cần phải được sửa đổi để bao hàm cả những hiệu ứng của thành mạch đàn hồi, nhưng đây hầu như chỉ là vấn đề áp dụng các nguyên lý lấy từ lý thuyết đàn hồi, một phân ngành đã được phát triển khá hoàn chỉnh của cơ học cổ điển continuum . Chẳng hạn, một tính toán CFD của sự lưu thông máu qua động mạch chủ, động mạch chính đi vào tim, đã được thực hiện ở Trường Đại học Bách khoa Liên bang ở Lausanne, Thụy Sĩ. Kết quả thu được đã cung cấp những thông tin giúp các bác sĩ hiểu rõ hơn các vấn đề về tim mạch.

Chúng cũng giúp các kỹ sư phát triển các dụng cụ y tế tiên tiến, như ống stent - ống nhỏ làm bằng lưói kim loại giúp giữ cho động mạch chủ mở. Suncica Canic đã sử dụng CFD và các mô hình có tính đàn hồi để thiết kế các stent tốt hơn, ông đã rút ra một định lý toán học khuyến cáo nên loại bỏ thiết kế cũ và gợi ý những thiết kế khác tốt hơn. Các mô hình loại này đã trở nên chính xác tới mức các Cơ quan quản lý thuốc và thực phẩm của Mỹ đang xem xét việc yêu cầu các nhóm thiết kế stent phải lập các mô hình toán học trước khi thực hiện những thử nghiệm lâm sàng. Các nhà toán học và các bác sĩ đang kết hợp cùng nhau để sử dụng phương trình Navier-Stokes nhằm có được những dự đoán tốt hơn, những phương pháp điều trị tốt hơn cho nguyên nhân chính của vấn đề tim mạch.

Một ứng dụng khác có liên quan là phẫu thuật tim tạo nhánh rẽ, trong đó một tĩnh mạch được lấy ra từ đâu đó trong cơ thể và cấy vào động mạch vành. Dạng hình học của phép cấy này có ảnh hưởng lớn đến sự lưu thông máu. Điều này, đến lượt mình, lại ảnh hưởng đến sự vón cục của máu, sự vón cục sẽ dễ có khả nãng xảy ra hơn nếu như dòng chảy của máu có các xoáy, bởi khi đó máu có thể bị bẫy vào một xoáy và không còn lưu thông một cách bình thường nữa. Do vậy, ở đây chúng ta thấy một mối liên kết trực tiếp giữa dạng hình học của dòng chảy và những vấn đề tiềm tàng trong y tế.

Phương trình Navier-Stokes còn có một ứng dụng khác nữa, đó là ứng dụng trong lĩnh vực biến đổi khí hậu, hay còn được biết đến như là sự nóng lên toàn cầu. Khí hậu và thòi tiết có liên quan với nhau, nhưng không phải là một. Thời tiết là cái xảy ra ở một nơi nhất định, tại một thời điểm nhất định. Trời có thể mưa ở London, có tuyết ở New York, hay nắng như đổ lửa ở Sahara. Thời tiết không thể dự báo được, và có những nguyên nhân toán học xác đáng cho chuyện đó: xem Chương 16 về hỗn độn. Tuy nhiên, hầu như những thứ không dự đoán được đều liên quan tới những thay đổi ở thang nhỏ, cả về không gian lẫn thời gian: những chi tiết chính xác. Nếu phóng viên thòi tiết trên TV dự báo rằng chiều mai thị trấn của bạn sẽ có mưa và điều đó xảy ra sáu tiếng đồng hồ sau thời điểm dự báo và ở cách xa thị trấn của bạn 20km, thì anh ta sẽ nghĩ rằng anh ta đã làm tốt công việc của mình, còn bạn thì rõ ràng chẳng mảy may có ấn tượng gì. Trong khi đó, khí hậu lại là các mảnh thòi tiết trong thời gian dài “dệt” lại với nhau - lượng mưa và nhiệt độ sẽ như thế nào khi lấy trung bình trong một thời gian dài, có lẽ là vài thập kỷ. Bởi vì khí hậu đã trung bình hóa những sai khác đó nên một điều nghịch lý là nó lại dễ dự báo hơn. Các khó khăn vẫn đang trong quá trình xem xét, và rất nhiều tài liệu khoa học nghiên cứu về những nguồn gốc khả dĩ của sai số và cố gắng cải thiện các mô hình.

Sự biến đổi khí hậu là một vấn đề rất rắc rối về mặt chính trị, mặc dù đã có sự đồng thuận mạnh mẽ về mặt khoa học rằng chính những hoạt động của con người trong thế kỷ trước đã làm tăng nhiệt độ trung bình của Trái Đất. Mức tăng hằng ngày rất nhỏ, khoảng 0,75oC trong suốt thế kỷ 20, nhưng khí hậu rất nhạy với sự tăng nhiệt độ ở quy mô toàn cầu. Những thay đổi này có xu hướng làm cho thòi tiết trở nên khắc nghiệt hơn, với nạn hạn hán và lụt lội thường xảy ra hơn.

“Sự nóng lên toàn cầu” không ngụ ý rằng nhiệt độ đều tăng một lượng nhỏ như nhau ở khắp mọi nơi, trái lại có sự thăng giáng lớn từ nơi này sang nơi khác, từ thời điểm này sang thời điểm khác. Năm 2010, Anh quốc đã trải nghiệm mùa đông lạnh nhất trong suốt 31 năm, khiến cho tờ Daily Express chạy dòng tít: “Thế mà họ vẫn khẳng định đó là sự nóng lên toàn cầu”. Điều thực sự đã xảy ra là, năm 2010 gắn với năm 2005 là năm nóng nhất trong lịch sử, trên khắp thế giới 1 . Và như vậy, “họ” đã đúng. Thực tế, đợt rét đột ngột đó là do gió xoáy đã đẩy không khí lạnh từ Bắc Cực xuống phía nam, và chuyện đó xảy ra bởi vì Bắc Cực đã nóng lên một cách không bình thường. Hai tuần băng giá ở trung tâm London không thể bác bỏ được sự nóng lên toàn cầu. Còn kỳ quặc hơn nữa, cũng chính tờ báo này đã tường thuật lại rằng ngày chủ nhật Phục sinh năm 2011 là ngày nóng nhất trong lịch sử, nhưng không liên quan gì tới sự nóng lên toàn cầu cả. Trong trường hợp này thì họ đã phân biệt chính xác hai từ thời tiết và khí hậu. Tôi cảm thấy thật thú vị với cách tiếp cận mang tính chọn lọc ấy.

Tương tự, “sự biến đổi khí hậu” không có nghĩa giản đơn là khí hậu đang thay đổi. Nó đã từng xảy ra mà không có sự tác động lặp đi lặp lại từ phía con người, chủ yếu là ở các thang thời gian dài, nhờ tro bụi và khí ga từ núi lửa, sự biến đổi trong thời gian dài của quỹ đạo Trái Đất quanh Mặt Trời, và cả sự va chạm của mảng lục địa Ấn Độ với mảng châu Á tạo thành dãy Himalaya nữa. Trong bối cảnh của những bàn cãi hiện nay, thực ra “sự biến đổi khí hậu” là dạng ngắn gọn của “sự biến đổi khí hậu có nguồn gốc từ con người” - tức là sự thay đổi khí hậu toàn cầu do hoạt động của con người gây ra. Nguyên nhân chính là do sự xuất hiện ngày càng nhiều hai khí dioxide carbon và metan. Có những khí gây hiệu ứng nhà kính: chúng bẫy (giữ) bức xạ (nhiệt) tới từ Mặt Trời. Vật lý cơ bản cho thấy rằng khí quyển càng có nhiều loại khí như thế thì nó càng giữ nhiệt lại nhiều hơn, khí hậu sẽ ngày càng ấm lên mặc dù hành tinh chúng ta vẫn bức xạ nhiệt ra không gian. “Sự nóng lên toàn cầu” đã được dự đoán trên cơ sở này ngay từ những năm 1950 và sự tăng nhiệt độ được dự đoán trùng khóp với nhiệt độ quan sát thấy hiện nay.

Bằng chứng cho thấy mức dioxide carbon đã tăng lên một cách ghê góm tới từ nhiều nguồn, mà trực tiếp nhất chính là các lõi băng. Khi tuyết rơi ở các vùng cực, nó xếp chặt lại với nhau tạo thành băng, với lớp trên là tuyết mới rơi và lớp dưới cùng là tuyết “già nhất”. Không khí bị bẫy nhốt trong băng, và những điều kiện phổ biến ở đó giữ cho khối không khí này thực sự không thay đổi trong một khoảng thời gian dài, và bằng cách đó giữ được không khí gốc ở trong và không khí mới hơn ở ngoài. Nếu thực hiện cẩn thận, ta có thể đo được thành phần của không khí bị giữ trong khối băng, và xác định được một cách chính xác ngày tháng mà nó bị nhốt. Những phép đo ở Nam Cực cho thấy nồng độ dioxide carbon trong khí quyển gần như không đổi trong suốt 100.000 năm qua, ngoại trừ 200 năm gần đây, nó đã tăng vọt tới 30%. Nguồn gốc của sự tăng quá mức đó có thể suy ra từ tỉ lệ carbon-13, một trong các đồng vị của carbon. Các hoạt động của loài người là lời giải thích xác đáng nhất.

Nguyên nhân chính của việc tại sao những người hoài nghi vẫn có những ý niệm rất mơ hồ về trường hợp này là do sự phức tạp của việc dự báo khí hậu. Điều đó phải được làm bằng cách sử dụng các mô hình toán học, bởi vì nó nói về các sự kiện ở tương lai. Không một mô hình nào có thể bao hàm được tất cả các đặc điểm riêng lẻ của thế giới thực, và, nếu nó có thực sự làm được đi nữa, thì bạn cũng không bao giờ có được cái mà nó tiên đoán, bởi vì không máy tính nào có thể mô phỏng nó được. Tuy nhiên, mỗi một sai khác giữa mô hình và thực tế, kể cả không quan trọng đi nữa, cũng là tin vui với những người hoài nghi. Chắc chắn là có những khác biệt giữa các quan điểm về những ảnh hưởng có thể có của biến đổi khí hậu, hay về những điều chúng ta cần phải làm để giảm thiểu chúng. Nhưng việc lờ chúng đi không phải là lựa chọn hợp lý.

Hai khía cạnh quan trọng của khí hậu là khí quyển và các đại dương. Cả hai đều chứa các chất lưu, và cả hai đều có thể được nghiên cứu nhờ phương trình Navier-Stokes. Năm 2010, cơ quan tài trợ chính cho khoa học của Anh quốc - Hội đồng Nghiên cứu Khoa học Vật lý và Kỹ thuật - công bố một tài liệu về biến đổi khí hậu, trong đó chọn toán học như một lực lượng có tác dụng thống nhất các lĩnh vực khác: “Các nhà nghiên cứu khí tượng, vật lý, địa lý, và một loạt các ngành khác đều đóng góp tài năng chuyên môn của mình, nhưng toán học mới là ngôn ngữ thống nhất, nó cho phép nhóm người khác nhau này thực hiện những ý tưởng của mình trong các mô hình khí hậu.” Tài liệu ấy cũng diễn giải rằng “Những bí ẩn của hệ thống khí hậu đã bị nhốt chặt trong phương trình Navier-Stokes, nhưng ta không thể giải một cách trực tiếp vì nó quá phức tạp.” Thay vào đó, những người lập mô hình khí hậu đã sử dụng các phương pháp số để tính toán dòng chảy của chất lưu tại các điểm của một lưói ba chiều, phủ kín địa cầu từ đáy sâu nhất của đại dương tới tận tầng cao nhất của khí quyển. Khoảng cách ngang của mắt lưói dài 100km - tất cả những gì có kích thước nhỏ hơn chỉ làm việc tính toán trở nên phi thực tiễn, nói cách khác là không thể thực hiện được. Các máy tính mạnh hơn cũng không giúp được gì nhiều, do đó cách tốt nhất vẫn là phải tiếp tục tư duy sâu sắc hơn nữa. Hiện các nhà toán học đang nghiên cứu nhằm tìm ra các phương pháp có hiệu quả để giải phương trình Navier-Stokes theo phương pháp số.

Phương trình Navier-Stokes chỉ là một phần của câu đố về khí hậu. Những nhân tố khác bao gồm các dòng nhiệt giữa các đại dương và bầu khí quyển, các ảnh hưởng của mây, sự góp phần của những yếu tố tự nhiên như núi lửa, thậm chí cả khí thải của máy bay ở tầng bình lưu. Những người hoài nghi hay nhấn mạnh những nhân tố như vậy nhằm gợi ý rằng những mô hình khí hậu kia là sai, nhưng thực ra chúng ta đều biết rằng hầu hết những tác động của riêng từng nhân tố ấy đều không liên quan đến biến đổi khí hậu. Chẳng hạn, mỗi năm núi lửa chỉ đóng góp khoảng 0,6% lượng dioxide carbon mà con người thải ra từ những hoạt động của mình. Tất cả những mô hình chính đều cho thấy rằng có một vấn đề nghiêm trọng và con người chính là thủ phạm gây ra nó. Vấn đề chính bây giờ là hành tinh này sẽ nóng lên bao nhiêu, và thảm họa xảy ra sẽ nghiêm trọng đến mức nào. Việc dự báo chính xác tuyệt đối là chuyện bất khả, nên vì lợi ích của mọi người, phải đảm bảo rằng những mô hình khí hậu của chúng ta là những mô hình tốt nhất, để chúng ta có thể có những hành động thích hợp. Khi băng tan, Hành lang Tây Bắc sẽ mở rộng do các vùng đóng băng ở Bắc Cực co lại, các núi băng của Nam Cực vỡ ra rơi xuống biển, chúng ta sẽ không còn có thể mạo hiểm mà tin rằng chúng ta không cần làm gì cả, và mọi chuyện rồi cũng sẽ ổn thôi.